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that their criticisms of Shaw's potential for Li do not apply to Na because Shaw modelled 
both the I = 0 and I = 1 components here. 

Finally, we remark that the dispersion curves for K., calculated with Shaw's potential, 
agree exceptionally well with the experimental values, at 9°K, of Cowley et al. (1966) (see 
figure 3). The relative errors of the HA potential are the same as for Na and the exchange­
correlation corrections have similar significant effects, so we need not discuss these curves 
further. 
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Figure 3. Phonon dispersion curves in K The full and broken curves are again as in figure 
1, and the experimental points are from Cowley et al. (1966). Units for the wave vector 

are as in figure I. 

3.3. Lead 
The dispersion curves for Pb, calculated from the local HA potential, are, at best, in 

only qualitative agreement with experiment. Shaw has not calculated his potential for 
any element as heavy as Pb. 

When the A, parameters of Animalu and Heine (1965) are used, the lower part of the 
[llOTtJ branch is imaginary, the peaks in the [100] branches are far too small and the 
phonon frequencies at the zone boundaries are too high, regardless of the dielectric function 
used. Because of the even greater cancellation of w~ and w~ than in At, the effects of the 
different forms for f(q) are greater, but the trends are much the same. The dispersion curves 
calculated with Animalu's semi-non-Iocal potential have more pronounced peaks in the 
[100] branches but are otherwise unaltered. The nearest neighbour distance in Pb is 
greater than four core radii, so we again expect the w~ contributions to be relatively unimpor­
tant. Effective mass corrections should be significant, but are unlikely to account for the 
differences from experiment. 

Satisfactory agreement with experiment cannot be obtained even when the A, parameters 
are varied arbitrarily, and the pressure derivatives of the elastic constants agree poorly 
with experiment (Miller and Schuele 1969). This form of potential therefore cannot be 
used to calculate reliably the phonon dispersion curves in Pb. Vosko et al. (1965) and 
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Harrison (1966) also could only obtain qualitative agreement with experiment by adjusting 
parameters in their potentials. As they pointed out, spin-orbit effects and effects due to 
the real Fermi surface and electron wave functions would be important in Pb and would 
have to be included in any proper theoretical treatment of its phonon dispersion curves. 

4. Pressure dependence of maximum phonon frequencies and superconducting transition 
temperatures 

We conclude the study of the model potentials by testing the predicted pressure deriva­
tives of the maximum phonon frequencies for the different branches. They have been 
used to calculate the pressure derivative of the superconducting transition temperatures. 
Tc;o of Al and Pb, following a method Hodder (1969) has used for Pb. We shall simply outline 
Hodder's technique here and indicate how we have used it, leaving all detailed discussion 
of the pressure dependence of T", both experimental and theoretical, to a later paper in 
which results of our detailed study of the electron- phonon interaction and supercon­
ductivity will be given (Coulthard, to be submitted for publication). 

Hodder's (1969) technique is based on McMillan 's (1968) formula for T. and an approxi­
mation of the phonon density of states F(w) by a superposition of Lorentzians. Assuming 
that only the peaks, w~ , of the Lorentzians move under pressure, he obtained : 

dlnT.=dlnwe 1·23 ± J. (dlnI" _2dlnw~) 
dP dP + (J. - 0'11)2 ,, =1 /1 dP dP 

(9) 

where 

3 3 Jro dw 
A = /1">;1 A/1 = /1">;1 2 0 IX;(W) F,.(w)--;;; 

1X2(W) F(w) is the electron- phonon coupling function (Scalapino et ai. 1966), We is the 
maximum phonon frequency, and 1/1 depends upon the electron-ion potential : 

m*n J2kF 

1/1 = 8n2k
F 

0 «£q/1 . q)2)av V2(q) q dq. 

The electron--electron Coulomb pseudopotential has been set equal to 0'10, and the 
frequency dependence of a;(w) for each mode fL will be neglected. 

In deriving equation (9), Hodder (1969) assumed that (~/edt)2 ~ 1, where ~ is the 
half-width of the Lorentzian. Making the same approximation in his equation (5) for A/1' 
we obtain 

A ~ 21X; 
" - edt 

while IX; = I"/aIt. from his equation (8). These equations are equivalent to McMillan's 
(1968) equation (39), and show that the coupling depends on the model potential mainly 
through the phonon frequencies. The value of d In T.ldP from (9) is dominated by aIt. and 
din alt.ldP, because we find din I,,/dP to be relatively small, so we have an immediate 
test of our calculated phonon pressure derivatives. 

The parameters for the Lorentzian fits to F(w) were chosen to reproduce as well as 
possible the experimental F(w) of Stedman et al. (1967). For AI, we used wr = 37, w~ = 2, 
wI = 21 ·5 and wi = 5-3 mev, and for Pb, 8'5, 0'5,4'3 and 1·5 respectively ; w~ = 2w~ through­
out. The I" integrals have been calculated using the same model potentials as for the 
phonons; exchange-correlation corrections in the dielectric function are again important, 
amounting to 20 % of I", but affecting the logarithmic derivatives by only about 5 %. 
Our values for the I", d In I "/dP, IX; and A are given in table 6. Likely errors, within the 
local HA potential approximation, are ± 3 % for AI and ± 10 % for Ph. Harrison's (1966) 
point ion potential yielded values of I" which were 10-20010 larger, while Shaw's non-local 
potential predicts values 5- 10010 smaller than those in the table. 


